Abstract

The total curvature of C 2 curves embedded in an arbitrary Riemannian manifold is shown to be the limit of the curvatures of inscribed geodesic polygons. The formula for the total curvature of a curve as the least upper bound of curvatures of inscribed geodesic polygons holds for a manifold of non-positive sectional curvature only.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.