Abstract
By a result of Klyachko the Euler characteristic of moduli spaces of stable bundles of rank two on the projective plane is determined. Using similar methods we extend this result to bundles of rank three. The fixed point components correspond to moduli spaces of the subspace quiver. Moreover, the stability condition is given by a certain system of linear inequalities so that the generating function of the Euler characteristic can be determined explicitly.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.