Abstract

This paper presents a nonlinear finite element analysis of reinforced concrete beams subjected to pure torsion. A verification procedure was performed on three specimens by finite element analysis using ANSYS software. The verification with the experimental work revealed a good agreement through the torque-rotation relationship, ultimate torque, rotation, and crack pattern. The studied parameters of strengthening by CFRP sheets included strengthening configurations and number of CFRP layers. The confinement configuration methods included full wrapping sheet around the beam, U-shaped sheet, ring strips spaced at either 65 or 130 mm, longitudinal strips at the top and bottom faces, U-shaped strips in addition to the number of layers variable. It was found that the performance of the beam for resisting a torsional force was improved by (33-49%) depending on the method of coating with CFRP sheets and the number of used layers. A change in the angle of twist, as well as the shape of the spread of cracks, was also noticed from the predicted results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.