Abstract
Let $E$ be an elliptic curve defined over $\mathbb{Q} $. We study the relationship between the torsion subgroup $E(mathbb{Q} )_{tors}$ and the torsion subgroup $E(K)_{tors}$, where $K$ is a cubic number field. In particular, we study the number of cubic number fields $K$ such that $E(\mathbb{Q} )_{tors}\neq E(K)_{tors}$.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.