Abstract

In this paper, the torsion and flexural-torsional coupled mechanical properties of different C/SiC torque tubes were investigated for the testing condition at room and elevated temperatures. Effects of fiber types, fiber preforms, and small hole during fabrication process on torsion mechanical properties were investigated. Flexural-torsional coupled mechanical tests for C/SiC torque tubes with different external diameter and wall thickness were conducted at room and elevated temperatures. The torsion and flexural moments and corresponding shear and flexural strength were obtained. The fracture surface and cracks propagation path were observed and analyzed. The torque and shear strength in T300™-3k torque tube were much higher than those of T300™-1k torque tube. Among 3D needled (3DN), 2D plain-woven [0°/90°] and [±45°] C/SiC torque tubes, the density, torque, and shear strength of 3DN-C/SiC torque tube were the highest. For the C/SiC torque tubes with small hole, the small hole not only increased the densification and uniformity (axial and radial) of the torque tube, but also has the potential to make the damage cracks more zigzag, which improved the fracture toughness of the torque tubes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.