Abstract

The Compact Linear Collider (CLIC) is a mature option for a future electron-positron collider operating at center-of-mass energies of up to 3 TeV. CLIC will be built and operated in a staged approach with three center-of-mass energy stages currently assumed to be 380 GeV, 1.5 TeV and 3 TeV. This talk discusses the prospects for top-quark physics at the two TeV-scale CLIC energy stages based on benchmark analyses using full detector simulations. New studies of top-quark pair production at high-energy CLIC operation make use of jet-substructure techniques originally developed for the LHC. Forward-backward and polarization asymmetries, as well as so-called optimal observables, are studied. The top Yukawa coupling and the CP properties in the ttH coupling are best probed in 1.5 TeV collisions. CLIC operation at 3 TeV also enables the study of top-quark pair production through Vector Boson Fusion. The BSM sensitivity provided by the top physics program at CLIC is illustrated using Effective Field Theory (EFT).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.