Abstract
Branching allows neurons to make synaptic contacts with large numbers of other neurons, facilitating the high connectivity of nervous systems. Neuronal arbors have geometric properties such as branch lengths and diameters that are optimal in that they maximize signaling speeds while minimizing construction costs. In this work, we asked whether neuronal arbors have topological properties that may also optimize their growth or function. We discovered that for a wide range of invertebrate and vertebrate neurons the distributions of their subtree sizes follow power laws, implying that they are scale invariant. The power-law exponent distinguishes different neuronal cell types. Postsynaptic spines and branchlets perturb scale invariance. Through simulations, we show that the subtree-size distribution depends on the symmetry of the branching rules governing arbor growth and that optimal morphologies are scale invariant. Thus, the subtree-size distribution is a topological property that recapitulates the functional morphology of dendrites.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.