Abstract

We consider the topology for a class of hypersurfaces with highly nonisolated singularites which arise as exceptional orbit varieties of a special class of prehomogeneous vector spaces, which are representations of linear algebraic groups with open orbits. These hypersurface singularities include both determinantal hypersurfaces and linear free (and free*) divisors. Although these hypersurfaces have highly nonisolated singularities, we determine the topology of their Milnor fibers, complements and links. We do so by using the action of linear algebraic groups beginning with the complement, instead of using Morse type arguments on the Milnor fibers. This includes replacing the local Milnor fiber by a global Milnor fiber which has a complex geometry resulting from a transitive action of an appropriate algebraic group, yielding a compact model submanifold for the homotopy type of the Milnor fiber. The topology includes the (co)homology (in characteristic 0, and 2 torsion in one family) and homotopy groups, and we deduce the triviality of the monodromy transformations on rational (or complex) cohomology. The cohomology of the Milnor fibers and complements are isomorphic as algebras to exterior algebras or for one family, modules over exterior algebras; and cohomology of the link is, as a vector space, a truncated and shifted exterior algebra, for which the cohomology product structure is essentially trivial. We also deduce from Bott's periodicity theorem, the homotopy groups of the Milnor fibers for determinantal hypersurfaces in the stable range as the stable homotopy groups of the associated infinite dimensional symmetric spaces. Applying a Theorem of Oka we obtain a class of formal linear combinations of exceptional orbit hypersurfaces which have Milnor fibers which are homotopy equivalent to joins of the compact model submanifolds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.