Abstract
Indistinguishable particles in two dimensions can be characterized by anyonic quantum statistics, which is more general than that of bosons or fermions. Anyons emerge as quasiparticles in fractional quantum Hall states and in certain frustrated quantum magnets. Quantum liquids of anyons show degenerate ground states, where the degeneracy depends on the topology of the underlying surface. Here, we present a new type of continuous quantum phase transition in such anyonic quantum liquids, which is driven by quantum fluctuations of the topology. The critical state connecting two anyonic liquids on surfaces with different topologies is reminiscent of the notion of a ‘quantum foam’ with fluctuations on all length scales. This exotic quantum phase transition arises in a microscopic model of interacting anyons for which we present an exact solution in a linear geometry. We introduce an intuitive physical picture of this model that unifies string nets and loop gases, and provide a simple description of topological quantum phases and their phase transitions. Quantum many-body systems can show an elusive form of order known as topological order. Theoretical work now unifies several microscopic models whereby topological phases have been found, and predicts quantum phase transitions that are driven by quantum fluctuations of the topology.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.