Abstract
First-principle electronic structure calculation reveals the appearance of a new class of surface state on hydrogenated and clean Si(1 1 1) surfaces. The states are found to exhibit different characteristics to conventional surface electron states in terms of the peculiar distribution of the wavefunction depending on the wavenumber. In addition, the state results in flat dispersion bands in a part of the surface Brillouin zone having energy of about 8 eV below the top of the valence band. An analytic expression based on the tight-binding approximation corroborates the surface electron state results from the delicate balance of the electron transfer among the atoms situated near the surface. The obtained results give a possible extension and generalization of the edge state in graphite ribbons with zigzag edges.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.