Abstract

In superalloys, topologically close–packed (TCP) phases, which contain refractory elements, usually significantly influence the mechanical properties. The current work investigates the structure and composition of the TCP phase in an Al–Mo–rich Ni–based single crystal superalloy. It is shown that after 40 h of thermal exposure, a large number of strip–like TCP phases are formed, which are enriched in Mo and Re. The structure of the TCP phase is identified as the tetragonal σ phase with the lattice parameter a being 0.93 nm and c being 0.50 nm. During the creep process, the single crystal tilts obviously and leads to orientation variation from <1 1 0> direction. Two groups of dislocations are observed in the deformed sample. One group contains straight dislocation lines and another group contains dislocation networks. The interaction between TCP phase and dislocation in the single crystal superalloy is studied to reveal the effect of the TCP phase on the deformation behavior. During creep, the σ phase hinders the dislocation movement, which may contribute to the propagation of the cracks and the final fracture.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.