Abstract

The wavelength-routed optical network-on-chip (WRONoC) is a promising solution for signal transmission in modern system-on-chip (SoC) designs. Previous works do not handle three main issues for WRONoCs: correlations between the topological structure and physical layout, trade-offs between the maximum insertion loss and wavelength power, and a fully automated flow to generate predictable designs. As a result, the insertion loss estimation is inaccurate, and thus only suboptimal results are obtained. To remedy these disadvantages, we present a fully automated topological structure and physical layout codesign flow to minimize the maximum insertion loss and the wavelength power simultaneously with a significant speedup. Experimental results show that our codesign flow significantly outperforms state-of-the-art works in the maximum insertion loss, wavelength power, and runtimes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.