Abstract

In the field of quantum simulation of condensed matter phenomena by artificially engineering the Hamiltonian of an atomic, molecular or optical system, the concept of synthetic dimensions has recently emerged as a powerful way to emulate phenomena such as topological phases of matter, which are now of great interest across many areas of physics. The main idea of a synthetic dimension is to couple together suitable degrees of freedom, such as a set of internal atomic states, in order to mimic the motion of a particle along an extra spatial dimension. This approach provides a way to engineer lattice Hamiltonians and enables the realization of higher-dimensional topological models in platforms with lower dimensionality. We give an overview of the recent progress in studying topological matter in synthetic dimensions. After reviewing proposals and realizations in various set-ups, we discuss future prospects in many-body physics, applications and topological effects in three or more spatial dimensions. Synthetic dimensions provide a way to artificially engineer extra spatial dimensions through other degrees of freedom. We review how synthetic dimensions have emerged as a promising tool for quantum simulations of topological lattice models in atomic, molecular and optical systems.

Full Text

Published Version
Open DOI Link

Get access to 115M+ research papers

Discover from 40M+ Open access, 2M+ Pre-prints, 9.5M Topics and 32K+ Journals.

Sign Up Now! It's FREE

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call