Abstract
We rederive the recently introduced N=2 topological gauge theories, representing the Euler characteristic of moduli spaces ℳ of connections, from supersymmetric quantum mechanics on the infinite-dimensional spaces [Formula: see text] of gauge orbits. To that end we discuss variants of ordinary supersymmetric quantum mechanics which have meaningful extensions to infinite-dimensional target spaces, and introduce supersymmetric quantum mechanics actions modeling the Riemannian geometry of submersions and embeddings, relevant to the projections [Formula: see text] and inclusions [Formula: see text] respectively. We explain the relation between Donaldson theory and the gauge theory of flat connections in three dimensions and illustrate the general construction by other two- and four-dimensional examples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.