Abstract
Visual evoked potentials (VEP) allow the characterization of visual function in preclinical mouse models. Various methods exist to measure VEPs in mice, from non-invasive EEG, subcutaneous single-electrodes, and ECoG to fully invasive intracortical multichannel visual cortex recordings. It can be useful to acquire a global, topographical EEG-level characterization of visual responses previous to local intracortical microelectrode measurements in acute experimental settings. For example, one use case isto assess global cross-modal changes in VEP topography in deafness models before studying its effects on a local intracortical level. Multichannel epicranial EEG is a robust method to acquire such an overview measure of cortical visual activity.Multichannel epicranial EEG provides comparable results through a standardized, consistent approach to, for example, identify cross-modal, pathological, or age-related changes in cortical visual function. The current study presents a method to obtain the topographical distribution of flash-evoked VEPs with a 32-channel thin-film EEG electrode array in anesthetized mice. Combined with analysis in the time and frequency domain, this approach allows fast characterization and screening of the topography and basic visual properties of mouse cortical visual function, which can be combined with various acute experimental settings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.