Abstract

Topographic effects on gravity field modeling are important for geodesy, geophysics and related geosciences. In this study we evaluate the gravitational effects of tesseroids in spherical coordinates, including the gravitational potential (GP), gravity vector (GV), gravity gradient tensor (GGT) and especially the gravitational curvatures (GC). With the adaptive discretization stack-based algorithm by Gauss-Legendre quadrature approach, the optimized distance-size ratio values (D) of the GC components are analyzed. Numerical experiments demonstrate that the difference percentage values of the GC components (e.g., Vxxz, Vyyz and Vzzz) are larger at the range of D ∈ [0; 10] compared to those of the GP, GV and GGT components (i.e., V, Vz, Vzz). Different distance-size ratio values D = 6, 7, 14, 30, 35, 41 and 50 for the GC component Vzzz are recommended to reach the 0.1% threshold error at corresponding computational heights 260, 150, 50, 10, 8, 6 and 4 km. Moreover, the forward modeling for the gravitational effects up to GC of tesseroids based on the ETOPO1 model in China is investigated. The GC functionals could help to extend the knowledges of interior structures of the Earth and other planetary objects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.