Abstract

1. 1. The enzymes involved in glycerolphosphate and monoacylglycerol acylation of rat small intestine were more active in villi than in crypts. Monoglyceride acyltransferase (EC 2.3.1.22) was found to be absent from crypts. 2. 2. In the villi, the enzymes are mainly localized in microsomes, although low activities of palmitoyl-CoA synthetase (EC 6.2.1.3), glycerolphosphate acyltransferase (EC 2.3.1.15) and cholinephosphotransferase (EC 2.7.8.2) are found in mitochondria. Mitochondria lack monoglyceride acyltransferase and lysolecithin acyltransferase (EC 2.3.1.23), both of which are involved in the reacylation of alimentary partial glycerides. Therefore, this process is confined to microsomes. 3. 3. The monoacylglycerol and lysolecithin acyltransferases, as well as cholinephosphotransferase, are probably localized within the endoplasmic reticulum, since these enzymes are relatively Nagerse resistant (subtilisin; EC 3.4.2.1, compared with palmitoyl-CoA synthetase and glycerolphosphate acyltransferase, which are highly Nagarse-sensitive and therefore probably localized on the outside of the microsomes (and mitochondria). 4. 4. The physical separation of alimentary product reacylation from de novo synthetic processes provides the basis of metabolic compartmentation observed by other workers. 5. 5. The use of sucrose instead of a salt medium for the isolation and homogenization of small intestinal epithelial cells allowed the separation of mitochondria and microsomes by differential centrifugation without mutual contamination. 6. 6. Phospholipids were found to stimulate glycerolphosphate acylation in vitro. 7. 7. The glycerolphosphate and monoacylglycerol acylation pathways are not competitive.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.