Abstract

Abstract. Alpine grasslands are an important source of fodder for the cattle of Alpine farmers. Only during the short summer season can these pastures be used for grazing. With the anticipated climate change, it is likely that plant production – and thus the fodder basis for the cattle – will be influenced. Investigating the dependence of biomass production on topoclimatic factors will allow us to better understand how anticipated climate change may influence this traditional Alpine farming system. Because small-scale topoclimatological variations of the main meteorological variables: temperature, humidity, precipitation, shortwave incoming radiation and wind speed are not easily derived from available long-term climate stations in mountainous terrain, it was our goal to investigate the topoclimatic variations over the pastures belonging to the Alp Weissenstein research station north of the Albula Pass in the eastern Swiss Alps. We present a basic assessment of current topoclimatic conditions as a site characterization for ongoing ecological climate change studies. To be able to link short-term studies with long-term climate records, we related agrometeorological measurements with those of surrounding long-term sites run by MeteoSwiss, both on valley bottoms (Davos, Samedan), and on mountain tops (Weissfluhjoch, Piz Corvatsch). We found that the Davos climate station north of the study area is most closely correlated with the local climate of Alp Weissenstein, although a much closer site (Samedan) exists on the other side of the Albula Pass. Mountain top stations, however, did not provide a convincing approximation for the climate at Alp Weissenstein. Direct comparisons of near-surface measurements from a set of 11 small weather stations distributed over the domain where cattle and sheep are grazed indicate that nocturnal minimum air temperature and minimum vapor pressure deficit are mostly governed by the altitudinal gradient, whereas daily maxima – including also wind speed – are more strongly depending on vegetation cover and less on the altitude.

Highlights

  • Alpine grasslands are an important source of fodder for the cattle of Alpine farmers

  • Because small-scale topoclimatological variations of the main meteorological variables: temperature, humidity, precipitation, shortwave incoming radiation and wind speed are not derived from available long-term climate stations in mountainous terrain, it was our goal to investigate the topoclimatic variations over the pastures belonging to the Alp Weissenstein research station north of the Albula Pass in the eastern Swiss Alps

  • We found that the Davos climate station north of the study area is most closely correlated with the local climate of Alp Weissenstein, a much closer site (Samedan) exists on the other side of the Albula Pass

Read more

Summary

Introduction

Alpine grasslands are an important source of fodder for the cattle of Alpine farmers. The traditional Swiss Alpine farming system uses three elevations to raise cattle: in the winter the animals are kept on the lowest elevation in the valleys and the cattle are fed mostly with hay and grains that can be stored in the main farm buildings. This traditional system is described in detail for the Canton of Grisons by Weiss (1941). When the snow has disappeared from the low-alpine areas, the cattle are moved further up to the Alpine pastures where they stay during the short summer (roughly three months from mid-June to mid-September).

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.