Abstract

Non-healing wounds are a serious complication in diabetic patients. One of the detrimental factors contributing to limited wound healing is the accumulation of metalloproteinase-9 (MMP-9) in the wound. Selective inhibition of MMP-9 is one of the established therapeutic targets for diabetic wound healing. Here, a functional and biocompatible wound dressing is developed to enable a controlled release of a traceable vector loaded with the antisense siRNA against MMP-9 in the wound. The dressing consists of degradable polymer nanofibers embedded with a vector nanosystem - polymer-coated fluorescent nanodiamonds optimized for the binding of siRNA and colloidal stability of nanodiamond-siRNA complexes in a physiological environment. The developed dressing is tested on murine fibroblasts and also applied to wounds in a diabetic murine model to evaluate its suitability in terms of in vivo toxicity, biological efficacy, and handling. The treatment results in significant local inhibition of MMP-9 and a shortening of the wound healing time. The scar formation in treated diabetic-like mice becomes comparable with that in non-treated diabetes-free mice. Our results suggest that the application of our biocompatible dressing loaded with a non-toxic vector nanosystem is an effective and promising approach to gene therapy of non-healing wounds.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.