Abstract

Topical delivery of oligonucleotides, though attractive for the treatment of skin disorders, is limited by the low permeability of the stratum corneum. Herein, we assessed the potential of low-frequency ultrasound (20 kHz, 2.4 W/cm2) in delivering therapeutically significant quantities of anti-sense oligonucleotides into skin. Dermal penetration of oligonucleotides penetration was quantified in vitro using radiolabeled oligonucleotides. Estimated concentrations of oligonucleotides (ODNs) in the superficial layers of the skin ranged from approximately 0.5% to 5% of the donor concentration after a 10-min application of ultrasound and ODN. Microscopic evaluations using fluorescently labeled oligonucleotides and sulforhodamine B revealed heterogeneous penetration into the skin. Heterogenous penetration led to the formation of localized transport pathways (LTPs), which occupied about 5% of the total exposed skin area. Immuno-histochemical studies using an oligonucleotide that reacts specifically with an antibody also confirmed penetration of ODNs into LTPs. Histologic studies revealed that no gross structural changes were induced in the skin due to ultrasound application. These results show successful delivery of anti-sense oligonucleotides using low-frequency ultrasound.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.