Abstract

Purpose: Endovascular brachytherapy for the prevention of intimal hyperplasia (IH) and restenosis after balloon/stent angioplasty has proven effective both in animal preparations and clinical trials. A variety of β-emitting isotopes and catheter-based devices have been developed for the delivery of low-dose radiation in clinical coronary and peripheral trials. No platform, however, has yet been developed for brachytherapy in concert with vascular surgical operations. The purpose of this study was to evaluate the vascular histopathologic response following balloon injury to rabbit carotid arteries with and without topically applied low-dose β-radiation. Methods: The β-emitting isotope strontium-90 (Sr-90) was conjugated onto the matrix of polypropylene (PLYP) mesh. Rabbit carotid arteries were balloon-injured with a #2 embolectomy catheter. Six carotid arteries were wrapped with nonradioactive PLYP mesh (controls) and Sr-90 (∼90 μCi) PLYP mesh in order to deliver low-dose radiation to the vessel wall from the external (adventitial) surface. Tissue was harvested at 6 weeks and processed for histologic examination. Results: There was consistent blockade of fibrocellular neointima formation with virtually no neointima present in all treated segments, compared to moderate neointima formation in controls. Medial thinning and smooth muscle cell (SMC) necrosis were also associated with topical brachytherapy. Conclusion: β-Radiation applied by an externally wrapped PLYP mesh labeled with Sr-90 markedly suppressed neointima formation in an animal vascular surgical injury model. Further studies, however, are necessary to determine a suitable isotope and dosage for clinical application.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.