Abstract

A complete theoretical model is presented for the thermal mirror technique under top-hat laser excitation. Considering the attenuation of the top-hat excitation laser intensity along the thickness of a sample due to its optical absorption coefficient, we calculate the laser-induced temperature and surface deformation profiles. A simplified theoretical model for a high absorption sample is also developed. The center intensity of a probe beam reflected from the thermal mirror at a detector plane is derived. Numerical simulation shows that the thermal mirror under the top-hat laser excitation is as sensitive as that under Gaussian laser excitation. With top-hat laser excitation, the experimental results of thermo-physical properties of opaque samples are found to be well consistent with literature values, validating the theory.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.