Abstract
A covariance analysis is presented for a differential GPS-based technique for satellite tracking and gravity recovery to be demonstrated on Topex in the early 1990's. The technique employs data from an ensemble of repeat ground tracks to recover a unique satellite epoch state for each track and a set of invariant local gravity parameters common to all tracks. For satellites above about 800 km altitude, where gravity modeling is the dominant systematic error, averaging of random error over many arcs and adjustment of the gravity model reduces the final satellite position error. The local gravity parameters can then be used to produce a refined global gravity model. The analysis indicates that errors ranging from 5 to 8 cm in Topex altitude and 0.05 to 0.2 mgal for the gravity field can be achieved, depending on the number of repeat arcs used.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.