Abstract

Whether pitch in language and music is governed by domain-specific or domain-general cognitive mechanisms is contentiously debated. The aim of the present study was to investigate whether mechanisms governing pitch contour perception operate differently when pitch information is interpreted as either speech or music. By modulating listening mode, this study aspired to demonstrate that pitch contour perception relies on domain-specific cognitive mechanisms, which are regulated by top–down influences from language and music. Three groups of participants (Mandarin speakers, Dutch speaking non-musicians, and Dutch musicians) were exposed to identical pitch contours, and tested on their ability to identify these contours in a language and musical context. Stimuli consisted of disyllabic words spoken in Mandarin, and melodic tonal analogs, embedded in a linguistic and melodic carrier phrase, respectively. Participants classified identical pitch contours as significantly different depending on listening mode. Top–down influences from language appeared to alter the perception of pitch contour in speakers of Mandarin. This was not the case for non-musician speakers of Dutch. Moreover, this effect was lacking in Dutch speaking musicians. The classification patterns of pitch contours in language and music seem to suggest that domain-specific categorization is modulated by top–down influences from language and music.

Highlights

  • Both speech and music perception focus on the acoustic signal, which is organized in a temporally discrete and hierarchical manner (McMullen and Saffran, 2004; Patel, 2008)

  • A question of particular interest concerns whether pitch in both domains is governed by domainspecific cognitive mechanisms (Peretz and Coltheart, 2003; Peretz, 2009) or whether it is processed by domain-general, shared processing mechanisms that span over both domains (Patel, 2008, 2012; Asaridou and McQueen, 2013)

  • In language the opposite pattern was found: falling tones were identified less accurate than rising tones

Read more

Summary

Introduction

Both speech and music perception focus on the acoustic signal, which is organized in a temporally discrete and hierarchical manner (McMullen and Saffran, 2004; Patel, 2008). Pitch is a fundamental and highly perceptual acoustic attribute of both language and music. Pitch is generally continuous and curvilinear, in music often relatively discrete (e.g., Zatorre and Baum, 2012). A question of particular interest concerns whether pitch in both domains is governed by domainspecific cognitive mechanisms (Peretz and Coltheart, 2003; Peretz, 2009) or whether it is processed by domain-general, shared processing mechanisms that span over both domains (Patel, 2008, 2012; Asaridou and McQueen, 2013). Whether or not mechanisms governing pitch processing are shared or distinct, understanding how these

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.