Abstract

Measurements of the top quark mass are presented, obtained from CMS data collected in proton proton collisions at the LHC at centre-of-mass energies of 7 TeV and 8 TeV. The mass of the top quark is measured using several methods and channels, including the reconstructed invariant mass distribution of the top quark as well as measurements based on charged particle information. The dependence of the mass measurement on the kinematic phase space is investigated. The results of the various channels are combined and compared to the world average. The top mass is extracted from the inclusive top quark pair production cross section measured at CMS. Presented at DIS 2016 XXIV International Workshop on Deep-Inelastic Scattering and Related Subjects Top quark mass measurements with the CMS experiment at the LHC Simon Spannagel∗† Deutsches Elektronen-Synchrotron DESY E-mail: simon.spannagel@desy.de Measurements of the top quark mass are presented, obtained from CMS data collected in proton proton collisions at the LHC at centre-of-mass energies of 7 TeV and 8 TeV. The mass of the top quark is measured using several methods and channels, including the reconstructed invariant mass distribution of the top quark as well as measurements based on charged particle information. The dependence of the mass measurement on the kinematic phase space is investigated. The results of the various channels are combined and compared to the world average. The top mass is extracted from the inclusive top quark pair production cross section measured at CMS. XXIV International Workshop on Deep-Inelastic Scattering and Related Subjects 11-15 April, 2016 DESY Hamburg, Germany ∗Speaker. †on behalf of the CMS Collaboration. c © Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). http://pos.sissa.it/ Top quark mass measurements with CMS Simon Spannagel

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.