Abstract

Abstract This article contains a broad overview of etch process as one of the most important top-down technologies widely used in semiconductor manufacturing and surface modification of nanostructures. In plasma etching process, the complexity comes from the introduction of new materials and from the constant reduction in dimensions of the structures in microelectronics. The emphasis was made on two types of etching processes: dry etching and wet etching illustrated by three dimensional (3D) simulation results for the etching profile evolution based on the level set method. The etching of low-k dielectrics has been demonstrated via modelling the porous materials. Finally, simulation results for the roughness formation during isotropic etching of nanocomposite materials as well as smoothing of the homogeneous materials have also been shown and analyzed. Simulation results, presented here, indicate that with shrinking microelectronic devices, plasma and wet etching interpretative and predictive modeling and simulation have become increasingly more attractive as a tool for design, control and optimization of plasma reactors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.