Abstract

Abstract Combining optics and microfluidics to create a portable optofluidic photonic crystal (PhC) biosensor is an approach with promising applications in the fields of counter-terrorism, agricultural sciences, and health sciences. Presented here are fabrication processes of a gallium nitride (GaN)-based PhC biosensor with a resonance-enhanced fluorescence detection mechanism that shows potential for meeting the single molecule detection requirements of these application areas. GaN is being targeted as the photonic crystal slab material for two main reasons: its transparency in the visible spectral range, within which the excitation and emission wavelengths of the commercial fluorescent-labeling dyes fall, and its intrinsic thermal stability which provides an increased flexibility of operating in different environments. Optical modeling efforts indicate a 25-fold enhancement of the fluorescent emission in this portable fluorescentbased PhC biosensor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.