Abstract

The process of empirical autotuning results in the generation of many code variants which are tested, found to be suboptimal, and discarded. By retaining annotated performance profiles of each variant tested over the course of many autotuning runs of the same code across different hardware environments and different input datasets, we can apply machine learning algorithms to generate classifiers for runtime selection of code variants from a library, generate specialized variants, and potentially speed the process of autotuning by starting the search from a point predicted to be close to optimal. In this paper, we show how the TAU Performance System suite of tools can be applied to autotuning to enable reuse of performance data generated through autotuning.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.