Abstract

A method to design tooling in sheet metal forming using springback calculations is presented. The designed tooling produces a part which matches the desired shape, thereby compensating for springback. To design the appropriate tooling, traction distributions on the sheet in the fully loaded deformed state are computed using the finite element method. The calculated tractions are then used to numerically reproduce springback of the desired part shape by elastic unloading of the part in a reverse manner. The method is examined for materials covering a range of steel strength and hardening, and is found to produce parts with negligible shape error. The success of the tooling design algorithm leads to a proposal for an experimental method to design tooling based on traction distribution measurements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.