Abstract

Caenorhabditis elegans TOM-1 is orthologous to vertebrate tomosyn, a cytosolic syntaxin-binding protein implicated in the modulation of both constitutive and regulated exocytosis. To investigate how TOM-1 regulates exocytosis of synaptic vesicles in vivo, we analyzed C. elegans tom-1 mutants. Our electrophysiological analysis indicates that evoked postsynaptic responses at tom-1 mutant synapses are prolonged leading to a two-fold increase in total charge transfer. The enhanced response in tom-1 mutants is not associated with any detectable changes in postsynaptic response kinetics, neuronal outgrowth, or synaptogenesis. However, at the ultrastructural level, we observe a concomitant increase in the number of plasma membrane-contacting vesicles in tom-1 mutant synapses, a phenotype reversed by neuronal expression of TOM-1. Priming defective unc-13 mutants show a dramatic reduction in plasma membrane-contacting vesicles, suggesting these vesicles largely represent the primed vesicle pool at the C. elegans neuromuscular junction. Consistent with this conclusion, hyperosmotic responses in tom-1 mutants are enhanced, indicating the primed vesicle pool is enhanced. Furthermore, the synaptic defects of unc-13 mutants are partially suppressed in tom-1 unc-13 double mutants. These data indicate that in the intact nervous system, TOM-1 negatively regulates synaptic vesicle priming.

Highlights

  • Membrane fusion is mediated by the interactions of cognate soluble NSF attachment protein receptors (SNARE) proteins associated with vesicle and target membranes [1,2]

  • We propose that in tom-1 unc-13 double mutants, syntaxin has an increased probability of assembling into SNARE complexes because tomosyn no longer precludes synaptobrevin binding to the plasma membrane SNAREs

  • Nematodes were maintained on agar plates seeded with OP50 bacteria

Read more

Summary

Introduction

Membrane fusion is mediated by the interactions of cognate SNARE (soluble NSF attachment protein receptor) proteins associated with vesicle and target membranes [1,2]. The plasma membrane Q-SNAREs syntaxin-1a and SNAP-25 assemble with the vesicle-associated R-SNARE synaptobrevin-2 (a.k.a. VAMP-2) to form a stable coiled-coil complex known as the SNARE complex [3,4]. The assembly of the SNARE complex in trans is thought to bring the vesicle into close apposition with the plasma membrane, and may drive the fusion reaction [5]. Several synaptic proteins have been implicated in the regulation of this fusion process through their SNARE interactions, including the recently identified protein tomosyn [6]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.