Abstract

Here, we aim to investigate the mechanisms of Toll-like receptor (TLR)-induced prodiabetic and proinflammatory activation of adipocytes and to detect differences in the responsiveness of TLRs to their respective ligands between adipocytes isolated from inflamed vs. noninflamed adipose tissue. Experiments using specific ligands for all known TLRs were performed in murine 3T3-L1 adipocytes and in human adipocytes isolated from noninflamed and inflamed adipose tissue. IL-6 and monocyte chemoattractant protein-1 (MCP-1) release were measured by ELISA. The expression of the signal transduction proteins phospho-extracellular signal-regulated kinase (P-Erk), P-c-Jun N-terminal kinase (JNK), and P-interferon regulatory factor-3 was investigated by Western blot analysis. Additionally, functional inhibitors of MAPK kinase-1/-2 and JNK-1/-2 were used in the stimulation experiments. Activation of TRL4 by lipopolysaccharide (LPS) and TLR1/2 by Pam(3)Cys up-regulates IL-6 and MCP-1 release in adipocytes via specific activation of Erk. Stimulation of adipocytes by macrophage activating lipopeptide-2 (MALP-2) induces MCP-1 but has no effect on IL-6 release. This stimulatory effect on MCP-1 release is antagonized by inhibition of both mitogen-activated protein kinase-1/-2 and JNK-1/-2. Phosphorylation of Erk and JNK is up-regulated after stimulation by MALP-2. In human adipocytes isolated from noninflamed adipose tissue, LPS and Pam(3)Cys, but not MALP-2, are potent inducers of IL-6 and MCP-1. MALP-2 is able to induce IL-6 and MCP-1 release in adipocytes isolated from inflamed adipose tissue, whereas these adipocytes lost their ability to respond to LPS. The present results point to a role of the adipose tissue in innate immunity. TLR-ligand-induced proinflammatory and prodiabetic activation of adipocytes might couple visceral adipose tissue dysfunction with insulin resistance and type 2 diabetes mellitus.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.