Abstract

Macrophages in infected tissues may sense microbial molecules that significantly alter their metabolism. In a seeming paradox, these critical host defense cells often respond by increasing glucose catabolism while simultaneously storing fatty acids (FA) as triglycerides (TAG) in lipid droplets. We used a load-chase strategy to study the mechanisms that promote long term retention of TAG in murine and human macrophages. Toll-like receptor (TLR)1/2, TLR3, and TLR4 agonists all induced the cells to retain TAG for ≥3 days. Prolonged TAG retention was accompanied by the following: (a) enhanced FA uptake and FA incorporation into TAG, with long lasting increases in acyl-CoA synthetase long 1 (ACSL1) and diacylglycerol acyltransferase-2 (DGAT2), and (b) decreases in lipolysis and FA β-oxidation that paralleled a prolonged drop in adipose triglyceride lipase (ATGL). TLR agonist-induced TAG storage is a multifaceted process that persists long after most early pro-inflammatory responses have subsided and may contribute to the formation of "lipid-laden" macrophages in infected tissues.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.