Abstract

Mutations which allow tolerance to 5-bromo-2'-deoxyuridine (BUdR) in a thymidine (TdR)-requiring strain of Bacillus subtilis have been examined. Differences in sensitivity to BUdR existed between isogenic strains harbouring the mutations. Those mutations originally isolated as BUdR-tolerant also bestowed tolerance to 5-bromouracil and vice versa. The strain exhibiting the greatest tolerance to BUdR maintained a normal rate of replication in the presence of BUdR whereas the parent strain did not, but the tolerant strain incorporated less analogue into DNA than the parent strain. The basis of the tolerance mutation appeared to lie at the point of uptake of the analogue into the cell as the tolerant mutant preferentially took up TdR over BUdR into whole cells. DNA polymerase activity measured in vitro did not distinguish between TdR and BUdR in either the parent or the mutant strain and although TdR kinase activity showed a preference for TdR over BUdR as a substrate, the extent of discrimination was similar in both strains.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.