Abstract

Developmental instability is the result of random environmental perturbations during development. Its absence (developmental stability) depends on an organism's ability to buffer environmental disturbances. Both genotype and environment influence the phenotypic expression of developmental instability and it is susceptible to selection pressure. We studied developmental instability (as indicated by increased within-individual asymmetry of repeated traits) in vegetative and reproductive structures of three populations of Cistus ladanifer L. living in different soil substrates (serpentine, siliceous and contact zone) to detect tolerance to serpentine soils. Serpentine soils, characterized by high concentrations of heavy metals (Ni, Cr, and Co), low levels of Ca/Mg ratio and high water deficit, can adversely affect plant performance. In this study we demonstrated that asymmetry and within-plant variance were higher in the contact zone population than either the silica or serpentine populations, proving the adaptation of C. ladanifer to serpentine soils. Within-population estimates of developmental instability were concordant for both vegetative and reproductive traits. There was little or no within-individual correlation among estimates of developmental instability based on different structures, i.e., plants that had highly asymmetric leaves always had high developmental instability in translational symmetry. Radial asymmetry of petals was negatively correlated with petal size, especially in silica soil plants, providing evidence of selection for symmetric and large petals. While leaf size was positively correlated with absolute fluctuating asymmetry, suggesting selection for small or intermediate size leaves. Serpentine soils presented the largest foliar and floral traits, as well as shoot elongation, while silica soil plants had the smallest scores. On the contrary, aboveground plant biomass was larger in silica soil plants, while the contact zone plants had the lowest biomass.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.