Abstract
PurposeThe purpose of this paper is to compare two different tools for tolerance analysis. Tolerance analysis is an important task to design and manufacture high-precision mechanical assemblies; it has received considerable attention in the literature. Many are the tools required to carry out a tolerance analysis, and may be divided into two categories: the analytical models and the statistical software packages. No comparison exists in the literature among these two categories.Design/methodology/approachThis work presents a comparison between two different approaches to tolerance analysis: an analytical method, the variational model, and a statistical software, eM-Tolmate. The comparison has been developed on the same aeronautical case study that constitutes an actual product.FindingsThe proposed approach has been applied to an aeronautical case study. The results of the case study show how, when 2D tolerance analysis problems need to be solved, the two adopted tools give the same results. When the complexity of the tolerance analysis problems increases, the statistical software becomes the only choice to use. The new findings of the present paper are related to the fact that computer-aided tolerance analysis software packages remain the only choice to approach actual complex industrial products despite the extensive development of theoretical research.Research limitations/implicationsThis paper deals with a unique case study. However, the two adopted approaches and the obtained results are general, that is, they may be applied to any assembly.Practical implicationsTolerance analysis is a valid tool to foresee geometric interferences among the components of an assembly, before getting the physical assembly. It involves a decrease of the manufacturing costs.Originality/valueMany are the tools for tolerance analysis, such as different analytical models and different commercial software packages. Some are the comparisons among the different tools in the literature, but they are not exhaustive. Therefore, when a user has to solve an assembly problem to foresee the geometric interferences during the design stage, he/she does not know what to choose. The original contribution of the paper is to address the user’s choice through a comparison between an analytical model and a statistical software to solve the tolerance analysis problems of an actual aeronautical assembly.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.