Abstract

High resolution mass spectrometry images are of increasing importance in biological applications, such as the study of tissues and single cells. Two promising techniques for this are matrix-enhanced secondary ion mass spectrometry (ME-SIMS) and matrix-assisted laser desorption/ionization (MALDI). For both techniques, the sample of interest must be coated with a matrix prior to analysis, and analytes must migrate into the matrix. The mechanisms involved in this migration and the factors that influence the migration are poorly understood, which lead to difficulties with reproducibility. In this work, a sublimation matrix coater with an effusion cell and sample cooling was developed and built in-house for controlled physical vapor deposition. In this system, sample transfer between the coater and mass spectrometer is possible without breaking vacuum, which facilitates the study of environmental influences on analyte migration. The influence of exposure to ambient air on the migration of two analytes (a lipid and a peptide), which were coated with the matrix α-cyano-4-hydroxycinnamic acid (CHCA), was studied using 3D-SIMS imaging. Although the distribution of analyte in the matrix changed very little after 21 h of storage in vacuum, significant redistribution of the analyte was observed after exposure to ambient air. The magnitude of the effect was greater for the lipid than for the peptide. Further work is needed to determine the role of humidity in the redistribution process and the impact of analyte redistribution on MALDI measurements.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.