Abstract

The diffusion characteristics of water molecules were measured in the vocal folds of canines exhibiting unilateral vocal fold paralysis and unilateral cricoarytenoid joint dislocation. These characteristics were used in conjunction with a histological examination of the microstructural changes of vocal fold muscle fibers to explore the feasibility of diffusion tensor imaging (DTI) in distinguishing unilateral vocal fold paralysis and unilateral cricoarytenoid joint dislocation as well as evaluating microstructural changes. Ten beagles were randomly divided into three groups: four in the unilateral vocal fold paralysis group, four in the unilateral cricoarytenoid joint dislocation group, and two in the normal group. Unilateral recurrent laryngeal nerve resection was performed in the vocal fold paralysis group. Unilateral cricoarytenoid joint dislocation surgery was performed in the dislocation group. No intervention was performed in the normal group. Four months postintervention, the larynges were excised and put into a magnetic resonance imaging (MRI) system (9.4T BioSpec MRI, Bruker, German) for scanning, followed by an analysis of diffusion parameters among the different groups for statistical significance. After MRI scanning, the vocal folds were cut into sections, stained with hematoxylin and eosin, and scanned digitally. The mean cross-sectional area of muscle fibers, and the mean diameter of muscle fibers in the vocal folds were calculated by target detection and extraction technology. Mean values of each measurement were used to compare the differences among the three groups. Pearson correlation analysis was performed on the DTI parameters and the results from histological section extraction. The paralysis group had significantly higher Fractional Anisotropy (FA) compared to the dislocation group and normal group (P=0.004). The paralysis group also had a significantly lower Tensor Trace value compared to the dislocation group and normal group (P=0.000). The average cross-sectional area of vocal fold muscle fibers in the paralysis group was significantly smaller than the dislocation group and normal group (P=0.000). Pearson correlation analysis yielded values of, r=-0.785, P=0.01 between the average cross-sectional area of vocal muscle fibers and FA, and values of r=0.881, P=0.00 between Tensor Trace and the average cross-sectional area of vocal muscle. FA and Tensor Trace can be used as effective parameters to reflect the changes of microstructure in vocal fold paralysis and cricoarytenoid joint dislocation. DTI is an objective and quantitative method to effectively evaluate unilateral vocal fold paralysis and unilateral cricoarytenoid joint dislocation, also capable of noninvasively evaluating vocal fold muscle fiber microstructure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.