Abstract

Transport Layer Security (TLS) is one of the most popular security protocols for end-to-end communications. The handshake process of TLS has high computation complexity and heavy delay, while the devices in Internet of Things (IoT) always have limited resources. Therefore, it is hard to deploy TLS in IoT. To tackle this problem, we propose a novel method to simplify the TLS handshake protocol based on Software Defined Network (SDN) for a general end-to-end communication scenario. Firstly, instead of doing the Diffie-Hellman key exchange to calculate the premaster secret of TLS, the controller is used to generate the premaster secret dynamically and then distributes this secret to the IoT devices through the encrypted channel between the SDN switch and the controller. Secondly, the certificate verification of TLS is transferred from the IoT devices to the more powerful controller. Furthermore, the security of our simplified protocol is validated by the deduction of BAN logic and the analysis for malicious attacks. The experimental results show that our protocol reduces both the latency in the whole handshake process and the computational overhead in the IoT devices compared with the traditional TLS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.