Abstract

We investigated the thermoelectric properties of titanium sulphene, namely, few-layered TiS(2) nanosheets, by using density functional theory and the Boltzmann transport equations. The Seebeck coefficient of titanium sulphene was found to increase if the thickness fell below 14 triple layers (~8 nm) and for the monolayer becomes 40% larger than that of the bulk TiS(2). This behavior is attributed to an enhancement in the density of states near the conduction band minimum in the monolayer. Moreover, the acoustic phonon band of the monolayer is more flat than that of the bulk, which results in a 37% reduction of the acoustic phonon group velocity and was beneficial for a low lattice thermal conductivity. Therefore, the combined effects from quantum confinement of both electrons and phonons could lead to a significant enhancement in thermoelectric performance in the two-dimensional titanium sulphene.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.