Abstract

Planetary surfaces beyond Earth’s are impacted by surface hydrology, and exhibit fluvial and lacustrine features. Titan in particular harbours a rich hydroclimate replete with valley networks, lakes, seas and putative wetlands, all of which are pronounced in the lower-elevation polar regions. However, understanding of Titan’s global climate has heretofore neglected the hydraulic influence of Titan’s large-scale topography. Here we add a surface hydrology model to an existing Titan atmospheric model, and find that infiltration, groundmethane evaporation, and surface and subsurface flow are fundamental to simultaneously reproducing Titan’s observed surface liquid distribution and other aspects of its climate system. We propose that Titan’s climate features infiltration into unsaturated low- and mid-latitude highlands and surface or subsurface flow into high-latitude basins, producing the observed polar moist climes and equatorial deserts. This result implies that a potentially massive unobserved methane reservoir participates in Titan’s methane cycle. It also illustrates the importance of surface hydrology in Titan climate models, and by extension suggests the influence of surface hydrology in idealized models of other planetary climates, including the climates and palaeoclimates of Earth, Mars and exoplanets. Coupling a global surface hydrology model to an existing atmospheric model of Titan reproduces the observed variable climate and distribution of surface liquid, with possible implications for an unobserved methane reservoir on Titan.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.