Abstract

BackgroundOptical coherence tomography (OCT) is a well established imaging technique with different applications in preclinical research and clinical practice. The main potential for its application lies in the possibility of noninvasively performing “optical biopsy”. Nevertheless, functional OCT imaging is also developing, in which perfusion imaging is an important approach in tissue function study. In spite of its great potential in preclinical research, advanced perfusion imaging using OCT has not been studied. Perfusion analysis is based on administration of a contrast agent (nanoparticles in the case of OCT) into the bloodstream, where during time it specifically changes the image contrast. Through analysing the concentration-intensity curves we are then able to find out further information about the examined tissue.MethodsWe have designed and manufactured a tissue mimicking phantom that provides the possibility of measuring dilution curves in OCT sequence with flow rates 200, 500, 1000 and 2000 μL/min. The methodology comprised of using bolus of 50 μL of gold nanorods as a contrast agent (with flow rate 5000 μL/min) and continuous imaging by an OCT system. After data acquisition, dilution curves were extracted from OCT intensity images and were subjected to a deconvolution method using an input–output system description. The aim of this was to obtain impulse response characteristics for our model phantom within the tissue mimicking environment. Four mathematical tissue models were used and compared: exponential, gamma, lagged and LDRW.ResultsWe have shown that every model has a linearly dependent parameter on flow (R^2 values from 0.4914 to 0.9996). We have also shown that using different models can lead to a better understanding of the examined model or tissue. The lagged model surpassed other models in terms of the minimisation criterion and R^2 value.ConclusionsWe used a tissue mimicking phantom in our study and showed that OCT can be used for advanced perfusion analysis using mathematical model and deconvolution approach. The lagged model with three parameters is the most appropriate model. Nevertheless, further research have to be performed, particularly with real tissue.

Highlights

  • Optical coherence tomography (OCT) is a well established imaging technique with different applications in preclinical research and clinical practice

  • We used a tissue mimicking phantom in our study and showed that OCT can be used for advanced perfusion analysis using mathematical model and deconvolution approach

  • Optical coherence tomography (OCT) is a well established imaging technique used in different fields of clinical medicine, preclinical research or biology

Read more

Summary

Introduction

Optical coherence tomography (OCT) is a well established imaging technique with different applications in preclinical research and clinical practice. Optical coherence tomography (OCT) is a well established imaging technique used in different fields of clinical medicine, preclinical research or biology. Stohanzlova and Kolar BioMed Eng OnLine (2017) 16:27 scale and to perform so-called “optical biopsy”. During this process, information about tissue can be obtained from imaging. Several functional OCT techniques have been developed during the last decade, including Doppler OCT, polarisation-sensitive OCT and spectroscopic OCT. These techniques examine different properties of tissue and/or blood. In this study we describe a new application of functional OCT in the field of perfusion imaging, using nanoparticles as a contrast agent

Objectives
Methods
Results
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.