Abstract

To prevent vibration-induced and liquefaction-induced damage to residential buildings during earthquakes, a low-cost technique has been developed and described here. It utilizes a mixture of tire chips and gravel as the horizontal reinforcing inclusion under the foundation of residential houses. The horizontal reinforcing inclusion refers to a layer of tire chips and gravel which is placed horizontally beneath the foundation. This mixture of tire chips and gravel provides sufficient bearing capacity to the foundation. In this research, a series of small-scale 1 g model shaking table tests was performed to evaluate the effectiveness of the technique. In addition, cyclic undrained triaxial tests were performed to evaluate the liquefaction susceptibility of tire chip-gravel mixtures. The results of the model tests indicated that when the thickness of the reinforced layer is 10 cm (2 m in prototype) and the gravel fraction (percentage by volume of gravel in the mixture) is 50%, the technique yields the best performance. The element tests also indicated that the gravel fraction plays an important role. A gravel fraction of 50–60% by volume was found to be the best mixing percentage, at which the rise in excess pore water pressure could be significantly restrained without compromising the stiffness of the reinforcing inclusion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.