Abstract
The tip-opening mechanism of burner-stabilized flames is investigated computationally using premixed propane + air mixtures. The temperature, net production rate, and reaction rates are investigated for rich mixtures. The flame tip structure was analyzed on the basis of reaction rates to understand the conditions of the equivalence ratio at which the tip-opening phenomenon occurs. Numerical predictions of tip opening are in good agreement with experimental observations. The study revealed that the tip-opening phenomenon starts at ϕ = 1.4. As the mixture becomes rich, the tip opening was found to increase. When the flame tip opens, the volumetric heat release rate at the tip was found to be less than 50% of the heat release rate at the flame shoulder. An increase in the flame tip thickness was observed around 30% from equivalence ratios of 1.3–1.4. The effect of the temperature on the propane burner flame structure is studied by performing simulations at three different mixture inlet temperatures of 300, 3...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.