Abstract

The fabrication of a highly controlled gold (Au) nanohole (NH) array via tip-based lithography is improved by incorporating a sacrificial layer-a tip-crash buffer layer. This inclusion mitigates scratches during the nano-indentation process by employing a 300nm thick poly(methyl methacrylate) layer as a sacrificial layer on top of the Au film. Such a precaution ensures minimal scratches on the Au film, facilitating the creation of sub-50nm Au NHs with a 15nm gap between the Au NHs. The precision of this method exceeds that of fabricating Au NHs without a sacrificial layer. Demonstrating its versatility, this Au NH array is utilized in two distinct applications: as a dry etching mask to form a molybdenum disulfide hole array and as a catalyst in metal-assisted chemical etching, resulting in conical-shaped silicon nanostructures. Additionally, a significant electric field is generated when Au nanoparticles (NPs) are placed within the Au NHs. This effect arises from coupling electromagnetic waves, concentrated by the Au NHs and amplified by the Au NPs. A notable result of this configuration is the enhancement factor of surface-enhanced Raman scattering, which is an order of magnitude greater than that observed with just Au NHs and Au NPs alone.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.