Abstract

PurposeMRI of the lung parenchyma is still challenging due to cardiac and respiratory motion, and the low proton density and short T2*. Clinical feasible MRI methods for functional lung assessment are of great interest. It was the objective of this study to evaluate the potential of combining the ultra-short echo-time stack-of-stars approach with tiny golden angle (tyGASoS) profile ordering for self-gated free-breathing lung imaging. MethodsFree-breathing tyGASoS data were acquired in 10 healthy volunteers (3 smoker (S), 7 non-smoker (NS)). Images in different respiratory phases were reconstructed applying an image-based self-gating technique. Resulting image quality and sharpness, and parenchyma visibility were qualitatively scored by three blinded independent reader, and the signal-to-noise ratio (SNR), proton fraction (fP) and fractional ventilation (FV) quantified. ResultThe imaging protocol was well tolerated by all volunteers. Image quality was sufficient for subsequent quantitative analysis in all cases with good to excellent inter-reader reliability. Between expiration (EX) and inspiration (IN) significant differences (p < 0.001) were observed in SNR (EX: 3.73 ± 0.89, IN: 3.14 ± 0.74) and fP (EX: 0.27 ± 0.09, IN: 0.25 ± 0.08). A significant (p < 0.05) higher fP (EX/IN: 0.22 ± 0.07/0.21 ± 0.07 (NS), 0.33 ± 0.07/0.30 ± 0.06 (S)) was observed in the smoker group. No significant FV differences resulted between S and NS. ConclusionThe study proves the feasibility of free-breathing tyGASoS for multiphase lung imaging. Changes in fP may indicate an initial response in the smoker group and as such proves the sensitivity of the proposed technique. A major limitation in FV quantification rises from the large inter-subject variability of breathing patterns and amplitudes, requiring further consideration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.