Abstract

Tissue inhibitor of metalloproteinase 2 (TIMP2) has been recognized as an important biomarker for predicting acute kidney injury (AKI) because of its involvement in the process of inflammation and apoptosis in septic AKI. Endoplasmic reticulum (ER) stress, a condition of disrupted ER homeostasis, is implicated in multiple pathophysiological processes, including kidney disease. Herein, we investigated the correlation between ER stress and septic AKI and further explored how TIMP2 regulated ER stress-mediated apoptosis. To assess the role of TIMP2 in sepsis-induced AKI, we used a cecal ligation and puncture (CLP) model in mice with tubule-specific deficiency of TIMP2 (Ksp-Cre/TIMP2flox/flox ) and their wild-type counterparts. Compared to the wild-type mice, TIMP2-deficient mice demonstrated lower serum creatinine levels and decreased ER stress-mediated apoptosis when subjected to CLP. Interestingly, in human kidney (HK-2) cells, overexpression of TIMP2 caused ER stress, whereas TIMP2knockdown attenuated lipopolysaccharide-induced ER stress and apoptosis. TIMP2 interacted with the binding immunoglobulin protein, an ER chaperone, and facilitates its extracellular secretion, thereby triggering ER stress. This study identified that the deletion of TIMP2 in mouse tubules mitigated sepsis-induced AKI by inhibiting ER stress-mediated apoptosis, which might be a potential therapeutic strategy to alleviate renal injury.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.