Abstract

Arylnitrenium ions have gained attention for their high reactivity toward guanosine, which in some cases has been linked to carcinogenesis. Although many studies have examined covalent addition reactions between arylnitrenium ions and guanosine, there is still some uncertainty regarding the attack position of nitrenium ions on guanosine and its derivatives. In this paper, we employ nanosecond transient absorption and nanosecond time-resolved resonance Raman spectroscopy to investigate the reaction between the N,N-di(4-bromophenyl) nitrenium ion (2) and guanosine. Our time-resolved spectroscopic results and photochemical product analysis results show that the reaction of guanosine with 2 generates an N7 intermediate that subsequently undergoes rearrangement and deprotonation to produce a C8 adduct. Comparing these results to our previous study between the 2-fluorenylnitrenium ion and guanosine indicates that the structure and properties of arylnitrenium ions are able to influence the reaction pathways and intermediate structures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.