Abstract

For the processing and detection of speech and music, the human cochlea has an exquisite sensitivity and selectivity of frequency and a dynamic range. How the cochlea performs these remarkable functions has fascinated auditory scientists for decades. Because it is not possible to measure sound-induced vibrations within the cochlea in a living human being, mathematical modeling has played an important role in cochlear mechanics. For this study, a three-dimensional human cochlear model with a fluid‒structure coupling was constructed. Time-domain analysis was performed to calculate the displacement, velocity, and stress of the basilar membrane (BM) and osseous spiral lamina (OSL) at different times in response to a pure tone stimulus. The model reproduced the traveling-wave motion of the BM. The model also showed that the cochlea's spiral shape can induce asymmetrical mechanical behavior of the BM and cause cochlear fluid to move in a radial direction; this may contribute to human sound perception. The cochlea's spiral shape not only enhances a low-frequency vibration of the BM but also changes the maximization of the positions of vibration. Therefore, the spiral's characteristics play a key role in the cochlea's frequency selectivity for low-frequency sounds. And this suggests that the OSL can react to sound as quickly as the BM. Furthermore, the basal region of the BM tends to have more stress than its other regions, and this may explain the clinical observation that human sensorineural hearing loss often occurs at high frequencies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.