Abstract

The design of distributed optimization-based controllers for large-scale systems (LSSs) implies every time new challenges. The fact that LSSs are generally located throughout large geographical areas makes difficult the recollection of measurements and their transmission. In this regard, the communication network that is required for a centralized control approach might have high associated economic costs. Furthermore, the computation of a large amount of data implies a high computational burden to manage, process and use them in order to make decisions over the system operation. A plausible solution to mitigate the aforementioned issues associated with the control of LSSs consists in dividing this type of systems into smaller sub-systems able to be handled by independent local controllers. This paper studies two fundamental components of the design of distributed optimization-based controllers for LSSs, i.e., the system partitioning and distributed optimization algorithms. The design of distributed model predictive control (DMPC) strategies with a system partitioning and by using density-dependent population games (DDPG) is presented.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.