Abstract
This paper quantificationally probes into time-varying migration processes of moving neutralization boundary (MNB) on immobilized pH gradient (IPG) strip in ammonia-rehydration buffers. The time-varying migration processes are determined by both time-varying dissociation equilibria of ammonia and position-varying pH environments formed by immobilized carrier ampholytes (CAs) on the IPG strip. Thus, the local dissociation equilibria of ammonia and the position-varying pH are introduced into the recursion equation of position of MNB migrations. The theoretical position-time curves and the velocity-time curves of MNB migrations obtained by the recursion approach were satisfactorily validated by a series of images of boundary migrations from the IPG-MNB experiments by using rehydration buffers with different ammonia concentrations on pH 3-6 IPG strips. The results achieved herein have significant evidence to a quantificational understanding of the mechanism of MNB and IEF.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.